/’_lg‘ Ecole d'ingénieurs et d'architectes de Fribourg
=4k / Hochschule fiir Technik und Architektur Freiburg

Math2mat

Base cell

Departement TIN - Electrical Engineering

16. juin 2009
Author : Samuel Tache (samuel.tache@hefr.ch)
Project leader : Claude Magliocco (claude.magliocco@hefr.ch)
Others invovled : Philippe Crausaz (philippe.crausaz@hefr.ch)

Revision Date Author

1 24.03.09 Samuel Tache

N
-

Math2mat - Base cell Electrical Engineering

Table of Contents

L. INErOAUCEION. ..t 5
1.1. PUrpose of the ProjeCt.....cciiiiiiii e 5
1.2, IEEE 754 fOrmat. ..o 5
1.3, Cell INter At i 6
1.4. Floating point algorithms........cccoiiii 8

1.4.1. AQdition / SUDEraCtioN...........ouuiiiiiieiie et 8
O 0 % [V 11 o] | o= u Lo o 8
I B B 1V Y o] o FO PP PPPPPP 8
Yo [V 1= g = o o) S 8

2. VHDL description of the base cells........cccooviiiiii, 9
2.1, TOP 1EVEI it 9
2.2, PIP i 10
2.3. AddFP, MUItFP, DiVFP, SQrtFP.......ciiiiiin e 10

2.3.1. INDUL @XCEPLIONS. ...t ee e 11
2.3.2. OULPUL EXCEPLIONS. ... et eaee 12
20 TG T O o =] o L 1 (o] o F 12
2.4, CoOMPAre DIOCK. ... i 13

3. VHDL code organizationcccoeiiiiiiiiiicic e 15
3.1. Project organization.......ccoiiiiii i 15
3.2, SOUICE IS ittt 15
3.3. Version of the operators... ..o 16

4. SYNthESiS reSUILS.. ..o e 19

5. Square root algorithm. ..., 21
DL, PrINC Pl et 21
5.2. NON-restoring SQUAre roOtviuviiiiii e 21

Samuel Tache 3/22 16. juin 2009

N
-

Math2mat - Base cell Electrical Engineering

1. Introduction

1.1. Purpose of the project

The base cells of Math2mat project are to perform basic operations such as +, -, *, /, sqrt. The
project's goal is to optimize the speed of operations, that's why a pipelined version of these
operators should be considered. Cells must manipulate floating point numbers. IEEE standard
754 has been imposed (single and double precision).

1.2. IEEE 754 format

L'IEEE 754 is a standard for the description of floating point numbers. Single precision format
includes 32 bits, 1 for the sign, 8 for the exponent and 23 bits for the mantissa. Double
precision format includes 64 bits, 1 for the sign, 11 for the exponent and 52 bits for the
mantissa.

Single precision format:

31/30]29]28|27]26|25]24]23|22|21|20]19]18|17|16|15|14|13]12]|11|10| 9| 8| 7| 6|5]4|3]2]1]0

S exponent mantissa

With the standard IEEE 754, the equation 1.1 allows to compute the real number.

number =(— 1) 1.mantissas 2" =27 Equ. 1.1

Round :
The IEEE 754 defines four rounding modes :

e Round toward +
e Round toward -
e Round toward 0
e Round to nearest
For the math2mat project, we only implemented one rounding mode, round to nearest.

This rounding is done by checking the value of the 24th bit generated during a computation
of the mantissa in single precision.

If this bit is '1', the mantissa is incremented by '1', otherwise she's unchanged.

Samuel Tache 57122 16. juin 2009

I}
M)~

Electrical Engineering

Math2mat - Base cell

Example :

round

1.1100...101 —— 1.1100...11
Round bit round

1.1100...100 ———— > 1.1100...10

Exceptions :

Type Exponent Mantissa
Zeros 0 0

Denormalized numbers 0 different to 0
Normalized numbers 1328-2 any

Infinity 2¢ _1 0

NaNs e _ 1 different to 0

Tableau 1: Exceptions IEEE 754 format
Math2mat project doesn't handle the denormalized numbers described by the IEEE 754

standard.

1.3. Cell interface

The interface of base cells (+, -, *, / and sqrt) was defined as follows (for square root, only

one input of data) :

—®» m.g
————® pipe_g
— = latency_g
— = type g
—— | wValid_g

——pt—P DLi
——r— 02
w@g—F valid_i
—P sl i
—p ck_i
—— - reset|

valid_o :

ready o———»

Illustration 1: Cellule de base

D1.i: Data 1 (IEEE 754 format).

Samuel Tache 6/22

16. juin 2009

)+

Math2mat - Base cell Electrical Engineering =
D2 i: Data 2(IEEE 754 format).
valid i : When high, the inputs are valid.
clk i: System clock.
reset i: System reset.
stall i : When high, stop the operation (!enable).
mg: Generic constant, defines the computation in single (m_g=32) or double
(m_g=64) precision.
pipe g : Generic constant, defines the combinatorial (= 0) or pipelined (!= 0) version.

latency g: Generic constant, defines the duration of the operation for the combinatorial
version.

type g: Generic constant, defines the algorithm used for the operation.

wValid g: Generic constant, defines the width of the signal valid_i

m o: Result of the operation in floating point (IEEE 754 format).
valid o: When high, the result is valid.
ready o: When high, a new computation can be done.

Even if the component allows to set generically the width of data bus, some
algorithms have so far been implemented in single precision, ie for a fixed bus
width of 32 bits.

For some operation, it's useful to have a cell, which one must delay a computation that must
be synchronized with another, so the next block was created. It's a shift register (delay g =
nb of registers) where each output m_o(i) has its validation signal valid_o(i).

———————» myg m_o yhe >
_—
delay g waiid g
— - wVald_g valid_o 1
m.g
m_i

— 22 3y valid i
| sl

—p >k
—p reseti

Delay

Illustration 2: Delay

Samuel Tache 7122 16. juin 2009

Electrical Engineering Math2mat - Base cell

1.4. Floating point algorithms

1.4.1. Addition / Subtraction

1. Take the largest exponent (= exponent of the result).

2. Shift the mantissa of the smallest number, the gab is the value of the difference of the
exponents.

3. Addition / Subtraction of the mantissas.

4. Normalization of the result : mantissa between [1:2[, modification of the exponent if
necessary

5. Round to nearest.

1.4.2. Multiplication
1. Addition of the exponents.
2. Multiplication of the mantissas.
3. Round to nearest.

4. Normalization of the result : mantissa between [1;2[, modification of the exponent if
necessary.

1.4.3. Division
1. Subtraction of the exponents.
Division of the mantissas.

Round to nearest.

> W

Normalization of the result: mantissa between[1;2[, modification of the exponent if
necessary.

1.4.4. Square root
1. Division by 2 of the exponent.
2. Square root of the mantissa.

3. Round to nearest.

4. Normalization of the result : mantissa between [1;2[, modification of the exponent if
necessary.

Samuel Tache 8/22 16. juin 2009

N
-

Math2mat - Base cell Electrical Engineering

2. VHDL description of the base cells

2.1. Top level

The top level of a base cell (Add2, Mult2, Div2 ou Sqrt) is a structural description composed of
2 or more components :

1. AddFP, MultFP, DivFP, SqrtFP : floating point computation (combinatorial or
pipelined).

2. Pipe : shift register used in various cases.

3. (AddFP_1, MultFP_1,...) : another algorithm. If so, the first algorithm becomes
AddFP_0, MultFP_0.

m_g

> mg M_0 ey
———————® pipe g i
Il

——» latency_g valid_o ‘—/’g—>

—) type g ready o ——

——» wValid g

D1 j
D2

—
— 289y valid

Mult2

~-WE————» WwE Yy O3
-WF—— Wk
~pipe_g——»{ Ppipe_g l1————— n
~type_g——— | type g

1 mg
=) Ge—tegp inpUL output s MOy

o1 —) a - i i -

D2 gy b -nstall_s——»| en

-nstall_s——» en_i -k ——m{ ck

—clk_i————»{ > clk_i _t H t

_ - -reset_ —»| rese :
—reset_—— reset i MUultFP Plpe

WE and wF generic constants define the width of exponent(wE) and mantissa(wF, F for
Fraction).

Samuel Tache 9/22 16. juin 2009

Electrical Engineering

Math2mat - Base cell

2.2,

Pipe

A component Pipe was created to generate a variable shift register with a variable width

bus.

2.3. AddFP, MultFP, DivFP, SqrtFP

The operation in floating point was implemented as following :

—_——®» W
—» N

w w
—F——p input output F———m;_———p
—— > _en
— > >ck
—————— .

reset Pipe
n
AL
' ™
w

»D O > —»D0 QF——"—»

—®En 88 ————En
rst rst

the result in output if necessary.

Separation of
input signals

mantissa)

(sign, exponent,

Input exceptions

\ 4

The input signals are separated in sign, exponent and mantissa.

The operation is executed in combinatorial or pipelined version. The depth of the
pipeline depends on the operation.
In parallel, a test of inputs is executed to check the exceptions values . The exception
is propagated to output to force the result.
Another block determines if an exception occurred during the computation and force

> Operation

/ Combinatorial
!/ version

/ Pipelined version

A 4

Output
exceptions

Samuel Tache

10/ 22

16. juin 2009

)+

Math2mat - Base cell Electrical Engineering
2.3.1. Input exceptions
Addition / Subtraction
Nb 0 + 00 - NaN
Nb Nb Nb + o0 -0 NaN
0 Nb 0 + -0 NaN
+ 00 + +0o0 +o0 NaN NaN
=00 -0 -00 NaN -0 NaN
NaN NaN NaN NaN NaN NaN
Multiplication
Nb 0 + 0 -0 NaN
Nb Nb 0 + -0 NaN
0 0 0 NaN NaN NaN
+ 00 +o0 NaN +oo -0 NaN
-c0 -0 NaN -0 + NaN
NaN NaN NaN NaN NaN NaN
Division
A/B Nb 0 + o0 - NaN
Nb Nb NaN 0 0 NaN
0 0 NaN 0 0 NaN
+ 00 + 0 NaN NaN NaN NaN
- -0 NaN NaN NaN NaN
NaN NaN NaN NaN NaN NaN
Square root
A VA
Nb Nb
<0 NaN
+c0 +
0 0
NaN NaN

Samuel Tache

11/22

16. juin 2009

I}
M)~

Electrical Engineering Math2mat - Base cell

2.3.2. Output exceptions

During an operation, the result may be outside the limits of the standard IEEE 754 single or
double precision. In this case, the result must be limited to values 0 or .

For the single precision, the computation of exponents is realized on 9 bits (1 bit for carry).
The treatment of exceptions is done as following :

8 7 6 5 4 3 2 10

exponent
1. exponent ="011111111" =>result =«
2. exponent= "000000000" =>result=0
3. bit8and 7 ="10" => result = »
4, bit8and7 ="11" =>result =0

Explications point 3 and 4 :

The largest possible result is obtained by multiplying two numbers with the exponent
011111110". During this operation, the exponent becomes :

011111110+011111110—1111111=101111101

This example shows that when the result is too large and must apply the infinite, the two
most significant bits of the exponent are "10".

When the division of a small number to a large one, the exponent result is :
000000011—-011000000+1111111=111000010

This example shows that when the result is too large and must apply the infinite, the two
most significant bits of the exponent are "11".

2.3.3. Operation

A detailed description of the various operators are in the folder \doc.

Samuel Tache 12 /22 16. juin 2009

Math2mat - Base cell

N
-

Electrical Engineering

2.4. Compare block

For the if...else implementation, we need to compare two values and know which number is
bigger, smaller or if the two signals are equal. This block, completely combinatorial, performs
this operation. It also includes the component pipe to propagate the signal valid_i to indicate
when the result is valid (depending on the latency).

—» mg smaller o ——
— = latency_g bigger ot P
—— » wVvalid_g equalo— P

mg wvalid_g
—eeeey 1] valid_o |

mg
—fee (2] ready o —————— W

.9 valid_i
————» stall_i
— o Clk i
— = reset i

- Compare
Samuel Tache 13/22 16. juin 2009

[%
)+

Math2mat - Base cell Electrical Engineering

3. VHDL code organization

3.1. Project organization

The folder math2mat contains the following subfolders :

EZD | do: contains the files *.do (script Modelsim).
) doc doc: project documentation.

Dstc src: contains the files *.vhd.

Chsynth synth : contains the synthesis files.

Cwerk work : library work.

% rodelsinm,ini

3.2. Source files

Files name :
A file with pkg_is a package.

A file with _tb is a testbench.
A file without this two terms is a source code.

Description :

misc.vhd : this file contains the component pipe. If another useful component must be
created, insert it in this file.

delay.vhd : cell delay to delay an output and its validation signal.
add2.vhd : cell addition.

mult2.vhd : cell multiplication.

div2.vhd : cell division.

sqrt.vhd : cell square root.
pkg_definition.vhd : Constants and functions declaration.
pkg _cellule.vhd : components add2, mult2, div2, sqrt and delay declaration.

Compilation script:

A script compile.do was realized to execute the compilation of source files in the correct
order. This file is in the folder \do.

Samuel Tache 15722 16. juin 2009

i)~

£E5 : o
Electrical Engineering Math2mat - Base cell

3.3. Version of the operators

The version of the operator is determined using the generic constants of the component. The
generic constant type g is used to determine the algorithm. Only the addition is implemented
with one algorithm and therefore doesn't have this constant. The generic constant pipe g
determines the combinatorial or pipelined version. Latency g constant determines the
latency time (number of clock period) before the output is stable for the combinatorial
version. And finally the generic constant m_g choose the single or double precision (be
careful, not all algorithms are implemented in double precision).

The algorithms SRT4 for the division and SRT2 for the square root were taken from the library
FPLibrary directed at ENS Lyon.

http://www.ens-lyon.fr/LIP/Arenaire/Ware/FPLibrary/

Add2 :
3 generic constants : m_g, pipe_g et latency g

m_g = 32 for single precision and m_g = 64 for double precision
latency g = 0 and pipe_g != 0, pipelined version

pipe_g = 0, combinatorial version, latency g determines the time (number of clock
period) before the output is stable.

Mult2 :
4 generic constants : m_g, pipe_g, latency g and type g

m_g = 32 for single precision and m_g = 64 for double precision (double only for wired
multiplier).

type_g = 0 : multiplier carry save adder
o pipe_g'=0and latency g = 0, pipelined version.

o pipe_g = 0, combinatorial version, latency g determines the time (number of clock
period) before the output is stable.

type g = 1 : wired multiplier
o pipe_g '= 0 and latency g = 0, pipelined version.

o pipe_g = 0, combinatorial version, latency g determines the time (number of clock
period) before the output is stable.

Div2 :
4 generic constants : m_g, pipe_g, latency g and type g

m_g = 32 for single precision and m_g = 64 for double precision (double only for SRT4
algorithm).

type_g = 0 : SRT4 algorithm

o pipe_g '=0and latency g = 0, pipelined version.

Samuel Tache 16 /22 16. juin 2009

N
-

Math2mat - Base cell Electrical Engineering

o pipe_g = 0, combinatorial version, latency g determines the time (number of clock
period) before the output is stable.

type_g = 1: algorithm "Array of soustracteurs"

o pipe_g!= 0, pipelined version.

o pipe_g = 0, combinatorial version

type_g = 2 : algorithm "Successive approximations".
o pipe_g = 0, combinatorial version.

Sqrt :
4 generic constants : m_g, pipe_g, latency g and type g

m_g = 32 for single precision and m_g = 64 for double precision
type_g = 0 : SRT2 algorithm
o pipe_g!= 0 and latency g = 0, pipelined version.

o pipe_g = 0, combinatorial version, latency g determines the time (number of clock
period) before the output is stable.

type_g = 1: non-restoring algorithm
o pipe_g!=0and latency g = 0, pipelined version.

o pipe_g = 0, combinatorial version, latency g determines the time (number of clock
period) before the output is stable.

Samuel Tache 171722 16. juin 2009

N
-

Math2mat - Base cell Electrical Engineering

4. Synthesis results

All the synthesis results were made with the synthesizer XST (Xilinx) and the FPGA Virtexll
xc2v1000-6bg575.

Single precision Double precision
TYPE Slices| % Fmax | Pipes| Slices % Fmax Pipes
Add2
Combinatorial 664 |12% 1801 35%
Pipelined 408 | 7% |170 MHz 7 2714 53% 21 MHz 7
Mult2
Wired multiplier
Combinatorial 105 | 2% 345 6%
Pipelined 155 | 3% | 112 MHz 5 442 8% 76 MHz 5
Carry save adder
Combinatorial 885 |17%
Pipelined 956 |18% | 203 MHz 7
Div2
SRT4
Combinatorial 598 |11% 2490 48%
Pipelined 1049 |20%|139 MHz| 16 4166 81% 100 MHz 30
Array of substractor
Combinatorial 2056 |40%| 6.8 MHz
Pipelined 1904 |37%|139 MHz| 30
Successive approximations
Pipelined | 3195 |62%) 6.3 MHz | | | | |
Sart
SRT2
Combinatorial 244 | 4% 901 17%
Pipelined 400 | 7% |132 MHz| 16 1438 28% 96 MHz 32
Non-restoring
Combinatorial 426 | 8% 1698 33%
Pipelined 701 |13%|163 MHz| 28 2778 54% 122 MHz 57

Synthesis with Virtex xc2v8000-5ff1152 :
1x Add2(pipelined) : 393 Slices, 1%

5x Add2(pipelined) : 1971 Slices, 4%

1x Mult2(pipelined) : 979 Slices, 2%

5x Mult2(pipelined) : 4900 Slices, 10%

Samuel Tache 19/22 16. juin 2009

I}
M)~

Electrical Engineering Math2mat - Base cell

The following results were achieved with the synthesizer Precision and the FPGA Virtex5
5VLX110FF676. (17280 Slices)

Single precision Double precision
TYPE Slices| % Fmax | Pipes | Slices| % Fmax | Pipes
Add2
Combinatorial| 106 |0.61% | 80 MHz 1 278 |1.61%| 60 MHz 1
Pipelined 122 10.71% | 267 MHz| 7 276 | 1.6% |170 MHz| 7
Mult2
Wired multiplier
Combinatorial| 27 |0.16% | 97 MHz 1 98 |0.57%| 60 MHz 1
Pipelined 47 10.30%|206 MHz| 5 102 0.59% 76 MHz 5
Carry save adder
Combinatorial | 416 |2.41% | 87 MHz
Pipelined 318 |1.84%|338 MHz 7
Div2
SRT4
Combinatorial | 211 |1.22%| 23 MHz 1 863 |5.00%| 9 MHz 1
Pipelined 321 |1.86%|242 MHz| 16 1295 |7.49%|201 MHz| 30

Array of subtractors
Combinatorial | 263 |1.52%| 7 MHz 1
Pipelined 547 13.17%|156 MHz| 30
Successive approximations

Combinatorial‘ 500 ‘2.89%‘ 7 MHz ‘ 1 ‘ ‘ ‘ ‘

Sqrt
SRT2
Combinatorial | 112 [0.65% | 24 MHz 1 434 |2.51%| 9 MHz 1
Pipelined 147 10.85%| 230 MHz| 16 530 |3.07% 163 MHz| 32

Non-restoring

Combinatorial | 183 |1.06%| 18 MHz 1 781 |4.52% | 6.7 MHz 1
Pipelined 261 |1.51%|265 MHz| 28 990 |5.73%|216 MHz| 57

Compare

Combinatorial ‘ 17 ‘0.10% ‘ 333 MHZ‘ ‘ ‘ ‘ ‘

Mult2 with a constant value (wired mulplier)
Pipelined | 40 |0.23% 206 MHz| | | | |

Samuel Tache 20/ 22 16. juin 2009

N
-

Math2mat - Base cell Electrical Engineering

5. Square root algorithm

5.1. Principle
Number representation in floating point is calculated as following:
F=M=x2°

The square root of a number in floating point :

If Eis even : VE =VM %2(E/2)
If Eis odd : \/E=\/M—/2* 2N(E/2)+1)

The square root of the mantissa was implemented with two different algorithms. The first was
taken from an existing library (SRT2 algorithm) and the other was realized by ourselves (non-
restoring algorithm).

5.2. Non-restoring square root

The square root of the mantissa is calculated through the following recurrence equation:

X,=0, ro=M _[+1 sir0
Qo=1 | 915 11 sinon
ri+1=2*ri_2*Xi*qi+1_2_(l+l)

Explication :
r,is the iy, partial remainder.
X is the iy, bit of square root result.
The computation is divided into four stages :
1. the value of the partial remainder is shifted a bit left to get 2*r;.

2. The value of qgi;; is inferred by the sign of the partial remainder. If it's positive, qi+1 = 1
and if it's negative, gi;1 = -1.

3. the value of the square root is shifted a bit left to get 2*X..

4. The computation of the partial remainder r,;; can be done using the results of the first
three stages.

Samuel Tache 21/22 16. juin 2009

I}
M)~

Electrical Engineering

Math2mat - Base cell

Computation of X at the iy, step, example :

X,=0.1,

sig,=—1, X,= X,—0.01,=0.01,
sig,=1, X,=X,+0.01,=0.11,

Example
Square root of 0.5 on 6 bits : theoretical value=

v0.5=0.707107

Ro=0.5 00.100000O0 Xo=0

2*rg 01.000000 m=1 X=01
-(2*Xo+2%) - 00 .1 0000 O

r 00.100000O0

2%, 01.00000O00O0 =1 X=011
-(2%%+2%) - 01 .0 10000

r 11.110000

2*r, 11.10000 0 gs=-1 X5=0.101
+(2*%2°) +0 1 .0 11000

rs 00.111000

2%r3 01.110000 =1 X=01011
(2*X%+2%) - 01 .0 10100

rs 00.011100

2%r, 00.111000 a=1 X=0.10111
(2*X+2°) - 01 .0 11010

rs 11.011110

2%r, 10.1 1110 0 ge=-1 X6=0.101101, =0.703125

Samuel Tache

22 /22

16. juin 2009

