

Math2Mat

VHDL generation documentation

Revision Date Who Comments

0.0 04.04.2011 DMO Initial version

1.0 15.04.2011 DMO Adds and Spelling corrections

Math2Mat VHDL generation documentation

2 @HES-SO

Contents

Contents ... 2

1.1 Block representation .. 4

1.2 Generic wrapper .. 5

1.3 Utilization .. 6

1.3.1 Timing diagrams ... 6

1.4 Content block... 7

1.4.1 Usual content .. 7

1.4.2 Propagation of “ready” ... 8

2.1 Introduction ... 9

2.2 Implementation .. 9

2.2.1 Internal fifo ... 10

2.2.2 Combinational logic .. 10

2.2.3 Synchronisation .. 10

3.1 Introduction ... 12

3.2 Multi-used signal ... 12

3.2.1 Structure modifications ... 12

3.2.2 Combinatorial logic .. 13

3.2.3 Fifos compensation ... 13

3.3 Latency time .. 15

3.4 Internal fifo justification .. 15

4.1 Introduction ... 16

4.2 Condition signal ... 16

4.2.1 Principle .. 16

4.2.2 Latency ... 17

5.1 Introduction ... 18

5.2 Principle ... 18

5.2.1 Desired rate ... 18

5.2.2 First decomposition ... 18

5.2.3 Second decomposition .. 19

1. Introduction .. 4

2. Wrapper .. 9

3. Mathematical function ..12

4. Conditional statement ...16

5. For Loop ...18

Math2Mat VHDL generation documentation

3 @HES-SO

5.2.4 Third decomposition ... 20

5.3 Body description .. 21

5.3.1 Connections .. 21

5.3.2 Iteration latency .. 23

5.3.3 Iterator and loop condition .. 23

5.4 Blocks description ... 24

5.4.1 Init_Input .. 24

5.4.2 Counter_Wr .. 24

5.4.3 Counter_Rd ... 25

5.4.4 Memory ... 25

Math2Mat VHDL generation documentation

4 @HES-SO

1. Introduction

The main purpose of this report is to describe the mechanisms put in place to generate

VHDL files corresponding to an octave function. To understand the details of the

generation of an octave function, an initial study from the outside of the functioning of a

Math2Mat block and its signals is necessary. It will then be possible to enter into the details

of generations of the different elements encountered in the structure such as polynomials,

conditional statements and loops. Wrappers allowing to connect the various hardware

blocks representing the operations will also be discussed.

1.1 Block representation

The following figure shows a generic Math2mat block comprising “n” number of entries

and “m” number of outputs:

Ready_o

Valid_i

Data_i

Ready_o

Valid_i

Data_i

Ready_o

Valid_i

Data_i

Ready_i

Valid_o

Data_o

Ready_i

Valid_o

Data_o

Ready_i

Valid_o

Data_o

Math2Mat Block

Input 1

Input 2

Input n Output m

Output 2

Output 1

Figure 1: Generic Math2Mat block

Each input and output is accompanied by three signals. Input signals have the following

meanings:

 Data_i: this signal is controlled by the user of the block. It indicates the actual value of

the data. Its size is 32 or 64 bits depending on the chosen architecture.

 Valid_i: this signal is controlled by the user of the block. It indicates the validity of the

data. It is represented by a single bit.

 Ready_o: this signal is returned by the Math2Mat block. It indicates when the input is

ready to receive data. It is represented by a single bit.

Output signals have the following meanings:

Math2Mat VHDL generation documentation

5 @HES-SO

 Data_o: this signal is returned by the block. It indicates the actual value of the data. Its

size is 32 or 64 bits depending on the chosen architecture.

 Valid_o: this signal is returned by the block. It indicates whether the data is currently

valid. It is represented by a single bit.

 Ready_i: this signal is controlled by the user of the block. It indicates when the output

is ready to receive data. It is represented by a single bit.

1.2 Generic wrapper

To avoid conflict between the names of inputs/outputs of a Math2Mat block and names of

inputs/outputs of different VHDL modules around the Math2Mat block, generic wrappers

are generated. They used to math2math own names for each of the inputs and outputs.

Inputs and outputs of wrappers are using specific names for each Math2Mat inputs and

outputs. Here is an example of the generation of a Math2Mat block and using two inputs

“a” and “b” and one output “c”:

Ready_o

Valid_i

Data_i

Ready_o

Valid_i

Data_i

Ready_i

Valid_o

Data_o
Math2Mat Bloc

b_i

b_Ready_o

b_Valid_i

a_i

a_Ready_o

a_Valid_i

s_o

s_Ready_i

s_Valid_o

Input_i

Input_Ready_o

Input_Valid_i
Result_o

Result_Ready_i

Result_Valid_o

Generic wrapper

a

b

s

Figure 2: Generic wrapper

Four tables of “std_logic” can represent all input and output “ready” and “valid”:

 “Input_valid_i” and “Input_ready_o” represent the “ready” and “valid” inputs.

 “Result_valid_o and “Result_ready_i” represent “valid” and “ready” outputs.

Two other tables of “std_logic_vector” “Result_o” and “Input_i” allow representing all

inputs and outputs. The various indexes of all these tables must match. The figure below

shows the positioning signals in these six tables:

a_iInput_i(0)

b_iInput_i(1)

a_Valid_i

b_Valid_iInput_Valid_i(1)

a_Ready_oInput_Ready_o(0)

b_Ready_oInput_Ready_o(1)

Input_Valid_i(0)

Input_Valid_iInput_i Input_Ready_o

Figure 3: input tables representation

Math2Mat VHDL generation documentation

6 @HES-SO

s_oResult_o(0) s_Valid_o s_Ready_iResult_Ready_i(0)Result_Valid_o(0)

Result_Valid_oResult_o Result_Ready_i

Figure 4: output tables reprsentation

1.3 Utilization

A Math2Mat block is seen from the outside regardless of content. The user relies on signals

“ready” and “valid” to control it as he wishes. He will certainly prefer to transmit all inputs

at the same time. However, some data may not be ready to receive data. We'll see later that

the user has the possibility to force the block to indicate that an input is ready only if all

inputs are.

1.3.1 Timing diagrams

To better understand how a block from the outside, consider the following timing diagram

with two inputs and one output:

Reset_i

Clk_i

A_i

A_Valid_i

A_Ready_o

B_i

B_Valid_i

B_Ready_o

C_o

C_Valid_o

C_Ready_o

Output

Inputs

Figure 5: timing diagram of a usual case

In this figure, we observe the sending of five data on each input and the reception of six

data on the output of the block. The processing of a given takes seven clock cycles. The

block operates in its usual case. Indeed, each input is always ready to receive data, the data

is sent at the same time and the external user of the block is ready to receive data also.

The following timing diagram helps to highlight the behavior of the same block in one less

common case:

Math2Mat VHDL generation documentation

7 @HES-SO

Reset_i

Clk_i

A_i

A_Valid_i

A_Ready_o

B_i

B_Valid_i

B_Ready_o

C_o

C_Valid_o

C_Ready_o

Output

Inputs

Figure 6: timing diagram of a no-usual case

One notice directly the influence of the control signals “valid” and “ready” on the flow of

data within the block. This diagram is not absolute because the value of the “ready” input

depends directly to the content of the block. Indeed, as we shall see later a number of fifos

may be present within the block and cause delays on the data.

1.4 Content block

1.4.1 Usual content

The content of a block is composed of interconnections of different sub-blocks represented

by operators. Each operator is used to construct a polynomial, a conditional statement or a

loop. To interconnect all of these operators, wrappers including control logic are inserted.

When an input is used by several operators, a combinational logic is also required. The

following diagram shows the typical contents of a block:

Operator

Wrapper

Operator

Wrapper

Operator

Wrapper

Combinational
logic

=
Ready_o

Valid_i

Data_i

Figure 7: block content

Math2Mat VHDL generation documentation

8 @HES-SO

The next sections of this report will present the entire framing element operators. This

pattern will be partially changed on the chapter on loops where some new elements will

appear.

1.4.2 Propagation of “ready”

When the user of a Math2Mat block is not ready to receive data, the “ready” signal is

spread within the entire block wrapper. The following example shows this propagation:

Operator

Wrapper

Operator

Wrapper

Operator

Wrapper

s_Ready_i <= ‘0’

d_Ready_o <= ‘0’

c_Ready_o <= ‘0’

b_Ready_o <= ‘0’

a_Ready_o <= ‘0’

2 to n clock pulses

2 to n clock pulses

2 to n clock pulses

Figure 8: propagation of "ready"

The number “n” of clock pulses to propagate the “ready” on inputs depends on the contents

of the wrapper that we will see later. The bold arrows represent the propagation of the

signal on the inputs.

Math2Mat VHDL generation documentation

9 @HES-SO

2. Wrapper

2.1 Introduction

A wrapper is used to interface input and output signals “data”, “valid” and “ready” with a

particular operator. Each operator can have one, two or three inputs and one output. It also

provides the following entries:

 Valid_in: this signal indicates whether the operator entries are valid.

 Valid_out: this signal indicates if the output of the operator is valid.

 Ready_out: this signal indicates whether the operator is ready to receive data.

 nStall: his active low signal is used to stop the chain of calculation of the operator.

All these signals are represented by a single bit. The outer part of the block diagram below

illustrates the interface to develop for a wrapper who includes an operator with two inputs

and one output:

Operator

A

B

nStall
Valid in

Valid out

result

Ready out

A_Ready_o

A_Valid_i

A_i

B_Ready_o

B_Valid_i

B_i

Result_Ready_i

Result_Valid_o

Result_o

Figure 9: bloc diagram of a wrapper

The number of generated wrappers must match the number of different operators used in

the octave function. Automatic generation of wrapper must be flexible on the number of

inputs and outputs of the operator.

2.2 Implementation

A wrapper is composed of three separate parts:

 The first part allows the synchronization of “ready” and signals “valid” inputs of the

wrapper.

 The second part includes the implementation of the combinational logic for the

management of “valid” and “ready” signals to the operator and the wrapper.

 The third part maintains a valid output when disabling the block by the signal

“ready_in”.

The following diagram represents a wrapper for an operator having two inputs and one

output:

Math2Mat VHDL generation documentation

10 @HES-SO

FIFO

A

H

Q1

Q8

ENB

Registre

Mux

0

1

s

DQ

valid_out

ready_in

in1

out

Mux

0

1

s

in2

D Q

En

Operator

A

B

nStall
Valid in

Valid out

A

H

Q1

Q8

ENB

Registre

result

Ready out

FIFO

data

read

write empty

full

result

valid_in2

valid_in1 FIFO

data

read

write empty

full

result

ready_out1

ready_out2

Figure 10: wrapper for a basic operator

2.2.1 Internal fifo

The internal fifos will eliminate some combinational loops between different wrappers.

These loops can occur when two wrappers are bound together by their inputs and outputs.

This phenomenon will be discussed in the section on polynomials.

These fifos can overcome the combinatorial link between “valid” and “ready” input for a

wrapper. Their size is set by default to two to remove the combinatorial link and allow data

sends in bursts. Indeed, if their size was one, the HDL description fifos could not send

bursts. The fifo would be full, then empty, then full, etc.

Thereafter, we'll see that these fifos will also serve as a buffer for a multi-used signal.

2.2.2 Combinational logic

The combinational logic between the fifos and operator is used to:

 Manage the influence of the inputs of the operator with each other.

 Indicate the validity of inputs present on the operator content in the wrapper.

 Spread the state of the “ready” signal of the wrapper on the wrapper operator inputs.

 Propagate the state of the “ready” signal of the operator contained in the wrapper to the

inputs of the operator.

2.2.3 Synchronisation

This block allows the management of three different signals:

 The output of the operator is connected to a multiplexer and a register also connected

to this multiplexer. This register keeps the output state of the operator when the input

“ready” of the wrapper is inactive. This “ready” is then used to select the direct output

of the operator if it is active or memorize output of the register if it is not. Thus, the

output of the operator is not lost and can be obtained during the reactivation “ready”.

Math2Mat VHDL generation documentation

11 @HES-SO

 The mechanism used for the output of the operator is also done for “valid” signal of the

operator.

 The “ready” input is connected to a registry to limit the combinatorial path of this

signal if the block Math2Mat includes a large number of operators. This

synchronization makes it possible to save the output data of the operator depending on

the state of the “ready” as we seen previously.

Math2Mat VHDL generation documentation

12 @HES-SO

3. Mathematical function

3.1 Introduction

The first generation produced is that of polynomials. It mainly covers the elements

previously seen by adding a combinational logic multi-used signals manager. To move

from an octave code to a VHDL description, a number of transformations are needed on the

structure. Indeed, the structure contains a high level description of the function and

includes not all control signals seen previously. This section also presents mechanisms to

obtain the latency of a function and adding compensation fifos for some operators to ensure

this latency.

3.2 Multi-used signal

3.2.1 Structure modifications

To show the necessary changes in the structure, consider the following octave code and its

corresponding structure:

tmp = a+b;

S = tmp+a+tmp;

Figure 11: structure state before generation

We note that signals “a” and “tmp” are used twice. Materially, it is impossible to represent

these signals as one signal. That's why these signals should be decomposed into two in

order to avoid possible conflicts. We obtain the following structure:

Figure 12: structure state after generation

Note that both signals have indeed been separated into two. It is necessary to define a logic

which interacts with both signals.

That transformation of the structure must be present for all signals contained in octave

functions. These transformations naturally generalize when the signals are used more than

twice.

Math2Mat VHDL generation documentation

13 @HES-SO

3.2.2 Combinatorial logic

The combinatorial logic must respect the following requirements:

 The output “ready” signal must combine all “ready” signals.

 The input “valid” signal must be shared by all inputs.

 If one input is not ready to receive data, the other inputs related to this input should not

be ready either.

The first two points are relatively easy to achieve. Indeed, just ready to consolidate and

decompose the signal valid. Here is an example for a signal “a_m2m_0” used twice:

Operator

Wrapper
Operator

Wrapper

a_m2m_0

a_m2m_Ready_0

a_m2m_Valid_0

a_m2m_0_0

a_m2m_0_1

a_m2m_Valid_0_0

a_m2m_Valid_0_1

a_m2m_Ready_0_0

a_m2m_Ready_0_1

b_m2m_0

b_m2m_Ready_0

b_m2m_Valid_0

s_m2m_0

s_m2m_Ready_0

s_m2m_Valid_0

Figure 13: combinational logic of multi-used signal

The data signal is directly shared by the two decomposed signal. The “ready” signal is

simply a “and” between the two “ready” decomposed signals. The “valid” signals are

obtained in a slightly more complex manner. Indeed, in order to prevent the sending of new

data on common inputs to decomposed inputs where the value is valid, it is necessary to

interact with the “valid” inputs. The following scenario is used to represent this case:

+

+

a_m2m_0

b_m2m_0

c_m2m_0

d_m2m_0

e_m2m_0

1
2

3

4

d_m2m_0_ready

b_m2m_0_0_ready

a_m2m_0_ready

b_m2m_0_1_valid

c_m2m_0_ready

<= ‘0’

<= ‘0’

<= ‘0’

<= ‘0’

<= ‘0’4)

3)

2)

1)

Figure 14: principle of multi-used variables logic

The main point of this operation is to disable the signal through the wrapper

“c_m2m_0_ready” signal “b_m2m_0_1_valid”. Again, this mechanism can be generalized

to a large number of inputs and dependencies.

3.2.3 Fifos compensation

To ensure a maximum rate, some compensation fifos are needed. The figure below shows a

case requiring such compensation:

Math2Mat VHDL generation documentation

14 @HES-SO

c_m2m_0

d_m2m_0

a_m2m_0

b_m2m_0

Op2

s_m2m_0

Op1

Op4

0

0

0

0

10

10

20

0

Op3

Figure 15: Example of case requiring fifos compensation

Assuming that all these additions have the same latency of 10, we can fix as above the

latency of each entry. If one observes the two inputs of operator “Op3” and “Op4”, we

notice that their latencies differ by a value of 10. These are two different cases:

 The case relative to “Op3” is the classic case where a multi-used signal is used by

operators whose inputs have different latencies. It must then compensate for these

latencies relative to the signal connected to the input of the lowest latency. In the case

above the input who has the lowest latency is “a_m2m_0”. Input “b_m2m_0”

connected to “Op3” must matched 10.

 The case relative to “Op4” is not related to multi-used inputs. It is present only when

both inputs of an operator have different latencies. It must then check whether the

entries sharing common signal and offset the difference in this case. On the figure

above the inputs of “Op4” share the input “b_m2m_0”.

The figure below shows the same case with compensation fifos of depth 10:

c_m2m_0

d_m2m_0

a_m2m_0

b_m2m_0

Op2

s_m2m_0

Op1
0

0

0

0

10

20
Fifo

Fifo

Op4

Op3

Figure 16: Example of case with fifos compensation

Regarding the calculation of latency inputs within the structure, it takes into account the

following values:

 Latency signal whose input comes.

 Latency of the operator.

 Internal fifos located in the wrappers.

This principle can also be generalized to a higher number of multi-used variables. Note that

if you want to send data at the same time, compensation fifos must be added as soon as the

latencies of the two inputs are different. This choice can be made before the generation

with a particular option of the tool. We will see later that for a loop, the inputs must always

be served simultaneously. Then all these fifos are essential. Adding fifos is changing the

size of internal fifos already present inside wrappers.

Math2Mat VHDL generation documentation

15 @HES-SO

3.3 Latency time

The latency time of a polynomial can be directly linked to the previous point. In fact, it

corresponds to the latency of the maximum output. Assuming that data is sent to each clock

pulse, the time needed to calculate n data will be as follows:

Consider the following scenario:

Number of data to send: 5000

+

+
0

0

0

0

10

18
Fifo1

Fifo2

*

-

Latency time for «*» operator: 8

Latency time for «+» operator: 9

Latency time for «-» operator: 7

0 + 9 + 1

18 + 8 + 1 = 27

10 + 7 + 1

0 + 9 + 1

Fifo1 size: 10

Fifo2 size: 8

Latency time = 5000 + 27 - 1 = 5026

Figure 17: Example of latency time calculation

The value of 1 is added to compensate the clock pulse required to write/read access in

internal fifos inside wrappers. For the final calculation, the value of 1 is subtracted given

that the clock pulse n°0 is the first. This result corresponds to the minimum latency that can

be obtained.

3.4 Internal fifo justification

The internal fifos is fully justified when the inputs and outputs of two wrappers are linked.

The following case from the dynamic view present this phenomenon:

Figure 18: Problematic case without internal fifos

The right circle represents the dependence between the outputs of both wrappers

multiplications. The left circle represents the strong dependence between the two inputs of

the two wrappers. When a particular output is not ready to receive data, the absence of

internal fifos create a combinational loop.

Math2Mat VHDL generation documentation

16 @HES-SO

4. Conditional statement

4.1 Introduction

Conditional statements “if” echo many of the concepts covered during the generation of

polynomials. Indeed, the bodies of “if” and all that surrounds them are constitutive of

polynomial. Only the status of “if” has not been discussed previously. This section presents

the details of managing the condition.

4.2 Condition signal

4.2.1 Principle

Consider the following octave code example to express a simple instruction conditional

“if”:

if (a < c) then

s = a-b;

else

s = c-d;

endif

The following diagram represents the graphical representation of the code above.

Surrounded operators show additions to a simple polynomial:

a_m2m_0

b_m2m_0

c_m2m_0

d_m2m_0

s_m2m_0

-

-

>

Mux

0

1

s

Figure 19: Graphical representation of a conditional instruction “if”

The first surrounded operator is a single operator “>”. Every operator is surrounded by a

wrapper and has its own latency. This operation is identical to any block presented in the

previous section. Note that the output of this operator has the particularity of being a single

bit. The second surrounded operator is a multiplexer operator. It was the only operator

consisting of three inputs. It is surrounded by a wrapper generalized to three inputs.

Math2Mat VHDL generation documentation

17 @HES-SO

4.2.2 Latency

In the previous example and after setting all the latencies we obtain the following result:

a_m2m_0

b_m2m_0

c_m2m_0

d_m2m_0

s_m2m_0

-

-

>

Mux

0

1

s

Latency time for «>» operator: 5

Latency time for «-» operator: 7

0 + 7 + 1

0 + 7 + 1

0 + 5 + 1
0

0

0

0

0

0

Fifo1

Fifo1 size: 2

Latency time for «mux» operator: 0

8 + 0 + 1

Figure 20: Latency time of a conditional instruction "if"

It is noted that only one fifo is necessary. It is determined simply by generalizing the

principles previously seen but for a three inputs operator. In this example, we note that the

input condition depends on “a_m2m_0” and “c_m2m_0”. The input “1” of multiplexer also

depends on “a_m2m_0” and therefore implies a fifo. If no dependency was present

between the different inputs, this fifo can be automatically set for allowing the sending of

all input data at the same time.

Math2Mat VHDL generation documentation

18 @HES-SO

5. For Loop

5.1 Introduction

The “for” loop are the most complex part of the generation. Indeed, its complexity is due to

differences in the loop “octave” and its representation in the structure and the loop material

to build. The purpose of this section is to show how the missing information in the

structure was filled. A certain number of units developed for this purpose will therefore be

presented.

5.2 Principle

To simplify the description of generation, we will break it down into several steps. At each

stage a higher level of specification will be presented.

5.2.1 Desired rate

The idea is to circulate a data per clock cycle inside the loop and store each output data in a

memory to the resort in order. In fact, the condition is unique to each data implying that

came up after another in the loop can exit before. It is therefore necessary to buffer these

data in a memory to guarantee an order consistent among the output data. A data can enter

the loop only if a memory index is available. The diagram below illustrates this principle:

Inputs

Loop for

1

Data 22

3

4

Memory

Body (latency = 4)

+

*

-

Data 4Data 3Data 2Data 1

Outputs

Figure 21: example of desired rate

The diagram above represents a loop with a latency of 4. Four data may buckle in both in

the loop. Data is located on each floor of the body of the loop. The end condition of the

second data has already occurred and the data was written in memory. It will exit the loop

when the condition of the first data will be realized. Meanwhile the data continues to turn

in the loop but its result is no more use.

5.2.2 First decomposition

A for loop consists of three distinct parts as presented in the following figure:

Math2Mat VHDL generation documentation

19 @HES-SO

Init Body
Recorder

Buffer
Outputs

Read/Write Inputs

Read Inputs

Figure 22: First decomposition of a “for” loop

 The first part allows the initialization and management of the loop inputs. There are

two types of inputs. The inputs used only in reading in the loop and those used in

reading and writing. The inputs used also in writing can be corresponding to an output

of the loop.

 The second part represents the content of the loop and its end condition test. Unlike

polynomial or conditional instruction “if”, a number of additional synchronizations are

required.

 The third and final part manages the results of the loop. We will see later that these are

managed by a recording mechanism.

The parts are intimately linked. The remainder of this section presents their content and

their interactions.

5.2.3 Second decomposition

Let's look specifically at blocks “init” and “memory” using the following figure:

Body

Counter_Wr

Init input

Init input

Init input

Counter_Rd

Memory Read_Result

Outputs

Read Inputs

Init input Memory Read_Result

Read/Write Inputs

Figure 23: Second decomposition of a “for” loop

The block “Init” includes two different blocks:

Math2Mat VHDL generation documentation

20 @HES-SO

 The “Init_Input” block allows to select the signals associated with its specific input or

else those who are through the “for” loop. The loop condition associated with the loop

data is used to perform this selection.

 The “Counter_Wr” block allows associating a number to each data in the loop. This

number is the index for writing the data into the memory. When new data is ready to

enter into the loop, a new number is assigned only if the maximum number of data in

the loop and the memory is not reached.

The block “Memory” includes three different blocs:

 The “Memory” blocks memory stores the output data of the loop. Given that the data

does not emerge automatically in the same order in which they came, this memory

allows reordering the data.

 The "Read_Result" block manages the loop communication with the output signals. It

allows reading a data in the memory and keeping the data on the output of the memory

when an output is not ready to receive data.

 The “Counter_Rd” block provides the index of the next data to be read according to the

size of the memory.

5.2.4 Third decomposition

This last decomposition highlights the paths of loop data, result data and read/write

indexes. Depending on the type of data, different paths are used. There are two different

paths for loop data:

 The first one is used by read input data. Since these data are not changed by the body

of the loop, it is necessary to buckle them before the body. These data should also be

delayed with fifos to compensate the latency of the body.

 The second one is used by read/write data. Since these data are modified by the loop

body, it is necessary to buckle them after the body. Provided that all the outputs of the

loop body have the same latency, it is not necessary to insert fifos. If their latencies are

different they may be delayed into the body by internal fifos.

The path used by the output data may seem surprising. In fact, when the output occurs

before the loop body, the condition is not yet calculated. Thus, we must delay the data and

write into the memory only after the calculation of the condition. An additional complete

iteration of the loop is therefore necessary to obtain the output data.

Each write index is associated with a read/write data and must buckle at the same time as

its data. These indexes should also be delayed with fifos to compensate the latency of the

body. A read index is only used when reading in memory. It is unique between two

readings. He did not need to buckle.

The figure below shows the paths described above:

Math2Mat VHDL generation documentation

21 @HES-SO

Body

Counter_Rd

Memory Read_Result

Memory Read_Result

Counter_Wr

Init input

Init input

Init input

Init input

Fifo

Fifo

Fifo

Fifo

Fifo

Outputs

Read Inputs

Read/Write Inputs

Figure 24: Third decomposition of a “for” loop

5.3 Body description

5.3.1 Connections

A number of connections are needed on the input signals from the body of the loop. The

loop works correctly only if the input data is perfectly synchronized. With the help of an

example with three inputs “a”, “b” and “c”, we will present the various interconnections

made. To do this, let us analyze the following scheme:

Math2Mat VHDL generation documentation

22 @HES-SO

Data_Valid

a_Valid_i

b_Valid_i

s_Valid_i

a_Loop_Valid

b_Loop_Valid

s_Loop_Valid

Init_Input

c_Loop_Ready

Init_Input

Init_Input
a

c

a_Ready_0

a_Ready_1

s_Loop_Ready

s_Loop

b_Loop_Ready

b_Loop

a_Loop_Ready

a_Loop

a_Init_Ready

b_Init_Ready

s_Init_Ready

b_Ready_0

b_Ready_1

c_Ready_0

c_Ready_1

a_inita_i

b_i

s_i

a_Ready_o

b_Ready_o

s_Ready_o

Data_Ready

b

a

s

b_Valid_0

b_Valid_1

s_Valid_0

a_Valid_0

a_Valid_1

Fifo

s_1

Operations

Fifo
Result

Management

Fifo

a_0

a_1

b_1

s_0

s_Valid_1

b_0

a_Loop

b_Loop

s_Loop

Loop_Valid

Loop_Valid

Loop_Valid

Init_Valid

Init_Valid

Init_Valid

a_Valid

a_Ready

a

b_Valid

b_Ready

b

s_Valid

s_Ready

b_init

s_init

Figure 25: Connections between inputs, “Init_Input” blocks and loop inputs

Math2Mat VHDL generation documentation

23 @HES-SO

All input “ready” and “valid” interconnections for a loop are presented above. Two outputs

are used for each entry. The first is used by the content of the loop. The second is used as

the loop variable. For a read/write input, the result of the loop body is used as a loop

variable. Its current value is timed and recorded in memory if the end condition is reached.

These mechanisms can be generalized to any number of inputs. All these connections can

enter new data and turn data into the loop on all inputs simultaneously. Without these

connections, one could accept an input data besfore the other involving a total

desynchronization of the loop.

5.3.2 Iteration latency

Still not out of sync the data in the loop, all inputs of the operators contained in the loop

body must have the same latency. Thus each latency difference between two inputs is

compensated even if no dependencies between the inputs are present. In fact, all the inputs

are dependent on each other in a loop. The following diagram shows a case of

compensation for different latencies within a loop:

+

+
0

0

0

0

10

18

Fifo2

*

Latency time for «*» operator: 8

Latency time for «+» operator: 9

Latency time for «-» operator: 7

0 + 9 + 1

18 + 8 + 1 = 27

10 + 7 + 1

0 + 9 + 1

Fifo1 size: 10

Fifo2 size: 8

0
Fifo1

-

10Ouputs of «Init_Input» blocks

Figure 26: Iteration latency of a loop

We obtain easily the maximum latency of the loop. This latency represents the maximum

number of data in the loop. It therefore set the minimum size of memories, fifos and the

number of read /write index.

5.3.3 Iterator and loop condition

The iterator and the loop condition are handled slightly differently:

 The iterator will always consist of an addition between the current value of the iterator

and the increment parameter value. The current value of the iterator is its initial

parameter value for the first iteration and its value for next iteration loop. Once the

value for the next iteration calculated, it is necessary to delay the result by using a fifo.

The iterator buckle with the data which it is associated. An “Init_Input” block is

inserted to the iterator as if was a standard input.

 The condition is calculated from the current value of the iterator and the end parameter

condition. It is also necessary to delay the result of the comparison by using a fifo. The

result is different at each iteration and does not need to buckle with a specific data.

The following diagram shows the management of the loop condition and the iterator:

Math2Mat VHDL generation documentation

24 @HES-SO

Init input

FifoInitial parameter value

Increment parameter value

End parameter value

+

FifoCmp Condition result

Figure 27: principle of the loop condition the iterator

5.4 Blocks description

5.4.1 Init_Input

This block takes as data two different data:

 An input from outside the loop representing the initial data. It is used once only during

the first iteration.

 A data from inside the loop representing the loop data. It is recovered at the output of

the loop body if it is an entry for reading and writing and entered the body if it is an

input only used for reading.

The input “Cond_i” selects one of the two inputs. If the condition is equal to „1‟ then enter

“Loop” is selected. Otherwise,the entry “Init” is selected. A similar logic is performed to

the management of “ready” and “valid”.

The diagram below shows the inputs / outputs of a block “Init_Input”:

Init_Input

=
Ready_o

Valid_i

Data_i

Clock_i

Reset_i

Data_Init_i

Data_Loop_i

Cond_i

Data_o

Figure 28: “Init_Input” block

5.4.2 Counter_Wr

As we have seen previously, the minimum size of the output memory can be sized using

the latency of the loop body. From this value we can know the number of indexes needed

to write in the loop. The challenge of this pack is to provide the next write index of the

Math2Mat VHDL generation documentation

25 @HES-SO

memory to new data. There may however be no index available. Indeed, if a maximum

number of data is already in the loop or if a number of data have already been written but

not read yet, no index should be reallocated.

Two vectors are used to indicate the index of reading and writing in the memory. The write

index is updated at each writing event. The read index is received from the “Counter_Rd”

block. Each write index is associated with a valid signal. Writing will actually occur when

the validity signal of the write index is set to „1‟. From these data and those provided by the

loop body, this block can provide a valid write index and a signal “ready” indicating to the

“Init_Input” block when it can send a new data. The write index and its validity signal

buckle at the same time that the data on which they are associated. Input signals

representing the write index and its validity signal indicate directly if the index is available

or not.

Counter_Wr

Clock_i

Reset_i

Ready_i

Fifo_Ready_i

Data_i

Data_oData_Valid_i

Cond_i

Read_i

Data_Valid_o

Ready_o Signal used by «Init_Input» bloc

Adr_Rd_i

Signals from loop body used for
update write and read index

Input write index and its validity signal Output write index and its validity signal

Figure 29: “Counter_Wr” block

5.4.3 Counter_Rd

This counter is much simpler than “Counter_Wr” block. The “ready” signal comes from

the outputs of the loop. It is active if all outputs are ready to be served. The “enable” signal

indicates whether the data present at output of the memory are valid. Based on these two

signals, the read index is incremented or maintained. The figure below describes the

input/output block:

Counter_Rd

Clock_i

Reset_i

En_i

Ready_i

Count_o

Figure 30 : “Counter_Rd” block

5.4.4 Memory

The minimum size of memory is set according to the maximum latency of the loop body. A

memory is associated with each output data. The write address signal and its validity from

the “Counter_Wr” bloc. A writing occurs when the write address is valid and the signal

“Wr_i” is active. A reading is possible when all the outputs of the loop are ready to receive

data. The output data from memory at a writing is accompanied by a valid signal.

Math2Mat VHDL generation documentation

26 @HES-SO

Memory

Clock_i

Reset_i

Wr_i Data_o

Adr_Rd_i

Adr_Wr_i

Adr_Valid_i

Rd_i

Data_i

Data_Valid_o

Figure 31: “Memory” block

